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Abstract

Feature attribution methods are typically used post-training to determine whether a deep learning

classifier is basing classifications off meaningful features in an input image. In this study, a novel

technique involving the integration of feature attribution methods into a model’s loss function was

proposed. These loss functions were coined heatmap loss functions. They were given this name as

feature attribution methods produce heatmaps that highlight the relative importance of regions

in an image for a given class classification. The heatmap loss function enables the provision of

automated feedback to a model about where it should or shouldn’t be looking within an image

when making a classification.

Two groups of models were trained, one group with a heatmap loss function and the other using

categorical cross entropy. Prior to model training, regions of input images were deemed irrelevant

for making classifications. The heatmap loss function served to disincentivise models from basing

classifications off of features present within those regions.

Models trained with the heatmap loss function achieved equivalent classification accuracies on

a test dataset of synthetic cardiac MRI cross sections. Moreover, HiResCAM heatmaps suggest

that these models rely to a greater extent on features found within the heart when performing

classifications on this test dataset.

A further experiment demonstrated that a heatmap loss function could be used to prevent

deep learning classifiers from using irrelevant features that disproportionately co-occur with certain

classes when making classifications.

The feature attribution method HiResCAM was integrated into the loss function for the

aforementioned experiments. However, models were also successfully trained using a Grad-CAM

loss function.

A heatmap loss function could be useful in overcoming the issue of learned biases and to train

more skillful classifiers∗ by directing where a model should look when making classifications in

training. An IDF has been filed with NovaUCD and is pending patent investigation.

∗Skillful classifiers are classifiers that look at information from the correct regions of images when classifying these
images as examples of a given class.
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Chapter 1

Introduction

In recent years, fully autonomous vehicles have taken to the roads (Schwall et al., 2020) and several

natural language processing models with hundreds of billions of parameters have been unveiled (Du

et al. (2021), Rae et al. (2021), Brown et al. (2020)). Given these recent advancements in Deep

Learning (DL), one would expect that it will not be long before tasks such as medical image

screening and disease diagnosis are fully automated using DL models. As outlined by Litjens

et al. (2017), DL models that outperform medical experts in image classification tasks have been

around for many years, with the diabetic retinopathy classifier of Gulshan et al. (2016) and the

dermatologist level skin lesion classifier of Esteva et al. (2017). Litjens et al. (2017) go as far

as stating, ‘deep learning techniques have permeated the entire field of medical image analysis’.

However, in spite of all this, there has been limited uptake of DL techniques in clinical settings

and resistance from consumers (Longoni et al., 2019).

This is due to several obstacles that are unique to the training and deployment of DL models in

the field of medical imaging.

Shorten and Khoshgoftaar (2019) discuss one major obstacle preventing widespread development

of high performing DL medical imaging models, which is limited datasets. According to Shorten

and Khoshgoftaar (2019), medical imaging datasets are often far smaller than traditional image

classification datasets due to; the expensive nature of acquiring medical images (i.e. the purchasing

and staffing of medical imaging machines), the privacy laws surrounding the sharing of medical

data and the reliance on medical experts to label data. Moreover, due to the rarity of certain

diseases, medical datasets are often highly imbalanced. This is a big issue as often the minority

class (i.e. the rare disease) is the class we are most interested in classifying. These factors hinder the

development of high-performing DL models which typically require large quantities of high-quality

data to train.

Moreover, as of 2018, GDPR requires algorithms that use an individual’s data to make decisions

that significantly affect the individual, to provide explanations (Goodman and Flaxman, 2017).

This is a major obstacle to the uptake of DL models in medical imaging. DL models are renowned

for their lack of interpretability and are often referred to as ‘black-box’ models as a result.
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Solving these issues surrounding the training and deployment of DL models in the field of medical

imaging is a worthwhile endeavour. DL solutions promise improved performance and speed over

their human counterparts. Furthermore, DL solutions are inherently scalable, this means medical

image analysis could be made more widely accessible with them.

The broad focus of this project has been on exploring the issue of explainability. This is the more

pertinent problem to solve, as the issue of limited datasets will become less relevant with the

accumulation of medical imaging data over time. On top of this, the decision was made to work

with cardiac MRIs. Cardiac MRIs are a worthy topic of investigation as cardiovascular diseases are

the leading cause of death globally (WHO, 2021) and cardiac MRIs are ‘an indispensable imaging

modality in the investigation of patients with suspected heart disease’ (Seraphim et al., 2020).

In the case of cardiac disease diagnosis, expert level classification and segmentation algorithms

have been developed as outlined by Bernard et al. (2018). However, there is a lack of research

into explainable DL cardiac disease classifiers, especially considering the severity and prevalence

of cardiovascular diseases. Hence, the initial project aim was to train such a classifier on the

Automated Cardiac Diagnosis Challenge (ACDC) dataset and to apply several explainability

methods to this model.

The explainability methods; Testing with concept activation vectors (TCAV), Discovery-TCAV,

Grad-CAM, Guided Grad-CAM and HiResCAM were all implemented or partially implemented.

However, the direction of this research project changed due to difficulties encountered working with

the ACDC dataset and the conception of a novel idea along the way. Consequently, the majority of

this thesis pertains to a different idea, a feature attribution loss function. These loss functions are

called heatmap loss functions. They were given this name as feature attribution methods produce

heatmaps. These heatmaps highlight the relative importance of the different regions in an image

for a given class classification.

These feature attribution methods are currently used post-training to judge if a DL model is

using meaningful features in an input image to make class classifications. Examples of such

feature attribution methods include; saliency maps, CAM, Grad-CAM and HiResCAM. Below

are some sample Grad-CAM heatmaps taken from (Burduja et al., 2020). They highlight the

relative importance of regions in CT scan slices for hemorrhage classifications.

The idea to incorporate existing feature attribution methods into a model’s loss function occurred

to me when implementing these methods in code. All the feature attribution methods that were
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Figure 1.1: Grad-CAM heatmaps for hemorrhage classification (Burduja et al., 2020)

implemented were differentiable with respect to the network’s weights and biases. This makes it

possible to integrate them into a model’s loss function.

The heatmap loss function used in this thesis consisted of a weighted sum of a heatmap component

and a mean squared error (MSE) component. The heatmap component serves to disincentivize the

classifier from relying on irrelevant portions of images when making classifications and the MSE

component acts to incentivise the model to make correct class classifications.

To keep in spirit with the original project’s aims, the heatmap loss function was used to train

cardiac disease classifiers on datasets of synthetic cardiac MRIs as well as MRIs from the ACDC

dataset. Thus, the areas of the MRIs outside of the heart were deemed irrelevant for making

classifications. Consequently, the heatmap component of the loss function was set equal to the

sum of the heatmap values that lay outside of the heart. This penalises the model for looking

outside of the heart when making heart disease classifications in training. Many other metrics have

been proposed to evaluate the degree of overlap between ground truth and predicted segmentation

masks in segmentation problems (Dice (1945), Belton et al. (2021)). Many of these could be easily

adapted for use in a heatmap loss function.

The goal of this project is to test whether a heatmap loss function can be used to;

• Train DL classifiers that achieve comparable classification accuracies to equivalent models

trained using traditional loss functions.

• Successfully discourage models from using specific features in an input image when making

class predictions.
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The decision was made to test the above hypotheses by training models on a dataset of synthetic

cardiac MRIs. The inspiration for this came from DeepMind. Deepmind are a leading DL research

group that perform the majority of their Reinforcement Learning research on simplistic computer

generated environments such as atari game worlds (Mnih et al., 2013). Moreover, synthetic datasets

have also been employed in the field of DL and biomedical imaging (Kim et al., 2019).

Using synthetic cardiac MRIs is advantageous for several reasons;

• Data availability is not a limiting factor, as more samples can always be generated.

• The classification task can be made harder or easier by making the systematic differences

between MRIs of different disease classes larger or smaller.

• The factors which the model should and shouldn’t be using to base classifications are known.

Progress made in applying a heatmap loss function to train binary classifiers on the ACDC dataset,

which classifies MRIs as either healthy or diseased, is also discussed.

As mentioned previously, a heatmap loss function could be applied outside of medical imaging

domains. This approach could be useful in overcoming the issue of learned biases and to train

more skillful classifiers by directing where a model should look when making classifications in

training.

4



Chapter 2

Literature Review

2.1 Introduction

In this review, the background knowledge required to engage with this project is provided.

Previous research that compares the performance of models trained using different loss functions

is critiqued. Learnings from this research that have shaped this project’s methodology are then

summarised.

A brief overview of DL explainability methods is then provided.

This is followed by analysis of several popular feature attribution methods. This analysis

determined the feature attribution method that was integrated into the heatmap loss function

in this study.

A wide range of techniques commonly employed to train DL models on limited datasets are then

explored. Learning how researchers have successfully applied these state of the art techniques was

relevant to this project as the ACDC dataset consists of only 100 cardiac MRIs.

A brief explanation of why the classifiers in this study were based off VGG and UNet networks is

given, with reference to the literature.

2.2 Comparing the performance of models trained with different

loss functions

Few studies have been carried out to compare the performance of models trained with different

loss functions. However, substantial flaws were identified in the approaches of those that were

found. Kim et al. (2019), Yessou et al. (2020) and Cho et al. (2019) compared performance metrics

achieved by models that were trained using different loss functions. However, they trained a single

model for each loss function and fixed the learning rate for all training runs. Moreover, Yessou

et al. (2020) and Cho et al. (2019) did not perform early stopping.
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These experimental design choices make it impossible for conclusions to be made about the effects

of different loss functions on the performance of models that a DL engineer is likely to train.

This is the case as:

• Statistical inferences cannot be made with samples of size one.

• Different loss functions will result in different loss surfaces for a given dataset. Consequently,

a learning rate that is optimal for one loss function is likely suboptimal for another. For this

reason, models trained with an arbitrarily chosen fixed loss function are not representative of

models that an engineer would deploy, because a DL engineer would tune a model’s learning

rate.

• Early stopping is usually employed in order to avoid overfitting. Thus, training each model

for an arbitrarily chosen fixed number of epochs makes these models unrepresentative of

models that an engineer would train.

The aforementioned studies made it clear that, the performance of models trained with a given

loss function, is an insufficiently defined parameter. In theory, all models are possible regardless

of the loss function chosen. Thus, all performances are possible regardless of the loss function

chosen. This is the case, as by varying the values of the weights and biases of the neurons in a

neural network, a given network architecture can yield an infinite number of model configurations

(models).

However, the loss function does affect the models that a DL engineer would consider for

deployment∗. This is the case as,

• During training, engineers seek models that minimise the loss function for a batch taken from

the training dataset via gradient descent.

• A model’s loss on unseen data is taken into account when deciding whether to deploy the

model.

I propose comparing the performance metrics of models that are trained with different loss functions

that a DL engineer is likely to deploy. A set of models that an engineer is likely to deploy is a subset

of the set of models that yield small losses for the given loss function. These sets are not equal as

there exist many model configurations which yield small losses that an engineer would likely never

∗A model applied on data outside of the training, validation and testing dataset is considered deployed.
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stumble upon. This is the case because an engineer is likely to follow accepted heuristics when

making hyperparameter choices, such as how to initialise the weights of a model.

Thus, in this study, attempts will be made to collect a sample of models that are representative of

the population of models that an engineer is likely to deploy. Compiling a representative sample of

such models is challenging as there is no consensus on how deep learning models should be trained.

Firstly, there is no consensus on which hyperparameters one should tune when training DL models.

Many hyperparameters other than the learning rate and batch size can be tuned. For example,

Gulshan et al. (2016) tuned the learning rate, early stopping and their image pre-processing

methods when training their state of the art diabetic retinopathy classifier. In contrast, Li et al.

(2020) focused on the effects of tuning a model’s momentum. Furthermore, establishing which

hyperparameters were tuned in research papers proved to be a difficult task. For example, the

researchers that trained classifiers on the ACDC dataset did not mention the hyperparameters

that they tuned ((Isensee et al., 2017),(Khened et al., 2017),(Wolterink et al., 2017),(Cetin et al.,

2017),(Zheng et al., 2019)). Details of the hyperparameter tuning process were also omitted

from the following papers corresponding to the ImageNet winning classifiers ((Krizhevsky et al.,

2012),(Simonyan and Zisserman, 2014)). The hyperparameter tuning process inevitably took place

when training all the aforementioned models. However, instead of discussing this process, values

for parameters that may or may not have been tuned were given. These parameters include the

regularisation techniques employed by the researchers (e.g. dropout and dropout rate), the network

weight initialisations, the number of training epochs and the different structural parameters of the

network architecture. Examples of structural parameters that could be tuned include the number

of hidden layers in a network, the number of neurons in these layers and the activation functions

applied.

The decision was made to only tune the learning rate of the models used in the experiments in this

study. This decision was made due to the ambiguity surrounding the hyperparameters that are

frequently tuned. Furthermore, according to Goodfellow et al. (2016), ‘The learning rate is perhaps

the most important hyperparameter. If you have time to tune only one hyperparameter, tune the

learning rate.’ Moreover, a VGG network that had been pre-trained on the ImageNet database

was altered and re-trained for this classification task. The majority of the hyperparameters used

in this VGG network were left untouched. Thus, these should be set to reasonable values.
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Secondly, there is no consensus on how to tune hyperparameters in machine learning problems.

According to Cho et al. (2020), some of the most popular methods to optimise a model’s

hyperparameters are based on Bayesian optimisation. These have been successfully employed in

tuning the hyperparameters of medical imaging classifiers such as the diabetic retinopathy fundus

classifier of Shankar et al. (2020). However, alternative search methods have also been employed,

such as random searches (Wang et al., 2018) and full and fractional factorial searches ((Staelin,

2003), (Lujan-Moreno et al., 2018)). Researchers have also investigated the use of Reinforcement

Learning agents to tune a DL model’s hyperparameters. Neary (2018) employed reinforcement

learning to tune the hyperparameters of a CNN trained to classify images from the MNIST dataset

and Rijsdijk et al. (2021) employed RL to tune the hyperparameters of a DL model trained to detect

side-channel security attacks.

A popular library called Keras Tuner (O’Malley et al., 2019) was used to perform the hyperpa-

rameter searches. These hyperparameter searches employed a Bayesian optimisation technique to

find learning rates which yielded small validation losses.

The weakest assumptions made in this experiment are that:

1. The performance metrics achieved by models trained with the VGG16 architecture, whose

only tunable hyperparameter is the learning rate, are representative of the performance

metrics achieved by all models a DL engineer would likely train.

2. All of the models that achieved a validation accuracy above 95% are representative of models

an engineer would deploy.

Regarding the first assumption. The simplifying approximation to use the VGG network was

justified as it is used disproportionately in computer vision tasks, as are all ImageNet winning

architectures ((Krizhevsky et al., 2012),(Simonyan and Zisserman, 2014), (Szegedy et al., 2015),

(He et al., 2016)).

Regarding the second assumption. An engineer would likely only deploy the model which achieved

the maximum validation accuracy among all trained models. The maximum classification accuracy

achieved would depend on many factors such as the difficulty of the classification task and the length

of time the engineer could afford to model training.
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Due to project time constraints, these flawed assumptions were deemed necessary. Despite these

assumptions, this methodology is thought to be far superior than the methodologies of Kim et al.

(2019), Yessou et al. (2020) and Cho et al. (2019).

2.3 DL explainability methods

Rudin (2019) defines DL explainability methods as methods that are applied post-training to

provide explanations that help make sense of the decision making process of ‘black box’ models.

These methods are valuable as;

• Models that make decisions which significantly affect users are required by law to provide

explanations (Goodman and Flaxman, 2017). Thus, the application of DL models in high-

stake scenarios is dependent on DL explainability methods.

• Gaining an understanding of DL models will aid in training models that are aligned with

the engineers goals and that achieve higher performances. Large DL models are extremely

expensive to train. Thus, methods that could potentially reduce the number of training

runs would be extremely valuable. According to Sharir et al. (2020), one training run of a

language model with 1.5 billion trainable parameters cost approximately $80,000 in 2020.

• The prevalence of DL models is likely going to increase with inevitable developments in the

field of DL. Interest in the field of DL is growing, with Alphabet Inc. and Meta, increasing

their AI research investments by several billion in 2021 (Rosenbush, 2022).

2.4 Feature attribution methods

According to Olah et al. (2017), there are two categories of DL explainability methods; feature

attribution† and feature visualisation methods. The focus of this study was to integrate feature

attribution methods into the loss functions used to train models. These loss functions were

called heatmap loss functions. They were given this name as feature attribution methods produce

heatmaps. These heatmaps highlight the relative importance of the different regions in an image

for a given class classification. As mentioned in the introduction, feature attribution methods

are generally differentiable with respect to the network’s weights and biases. Consequently, it is

possible to integrate these methods into a model’s loss function.

†Feature attribution methods are also called saliency maps.
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A heatmap loss function inherits the limitations of the feature attribution method that is integrated

into it. Consequently, choosing a feature attribution method to integrate into a heatmap loss

function warrants a lot of consideration. This is not a trivial task as there is a lack of consensus on

which feature attribution methods work and which ones do not. Moreover, there is not an accepted

list of tests to assess a feature attribution method nor are there ground truth heatmaps that can

be used to compare generated attribution heatmaps to.

As a result, the evaluation criteria applied to new feature attribution methods before their

dissemination have been informal and not quantifiable. Adebayo et al. (2018) demonstrated that

this approach to evaluating feature attribution methods is vulnerable to human confirmation bias.

It has undoubtedly led to the acceptance of feature attribution methods which appear to behave

very similar to edge detectors. Adebayo et al. (2018) illustrated how many attribution methods

produce similar attribution heatmaps for a given image regardless of the configurations of the

weights and biases of the model which they are meant to provide insight into.

In the sections that follow, explanations will be given as to why popular feature attribution methods

were not chosen to be integrated into a heatmap loss function in this study.

CAM

CAM was not considered as it can only be applied to a limited set of networks‡. Although, to the

best of my knowledge, CAM heatmaps provide meaningful explanations.

Grad-CAM

Grad-CAM succeeded CAM. Unlike CAM, Grad-CAM can be applied to a much wider range of DL

models§. The Grad-CAM loss function was successfully integrated into a heatmap loss function

and used to train a model on the dataset of synthetic cardiac MRIs. Grad-CAM passed the

assessments laid out by Adebayo et al. (2018) and has been widely used to bring explainability to

medical imaging DL models ((Pasa et al., 2019),(Baltruschat et al., 2019),(Belton et al., 2021)).

However, the main experiment was not carried out with a Grad-CAM loss function due to a major

flaw with Grad-CAM that was highlighted by Draelos and Carin (2020). Draelos and Carin (2020)

‡CAM can only be applied to networks that apply global average pooling to the feature maps that are output
from the last convolutional layer of a network. These pooled feature maps must also be followed by a single fully
connected layer which makes classifications.

§Grad-CAM can be applied to all models whose class logits are differentiable with respect to the feature maps
that are output from the network’s last convolutional layer.
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demonstrated that Grad-CAM highlights regions of images as important that were not used to

base classifications. This is due to the importance of features in a feature map being computed by

multiplying the activations of the neurons in that feature map by the average gradient of the class

logit¶ with respect to that feature map. By averaging the gradients in a feature map, information

is being lost and less accurate attribution heatmaps are produced. According to Draelos and Carin

(2020), the averaging of gradients was likely inspired by the global average pooling of feature maps

in CAM.

HiResCAM

To overcome the limitation of Grad-CAM, Draelos and Carin (2020) proposed HiResCAM. The

importance of features in a HiResCAM feature map are computed by performing an element wise

multiplication between the activations of the neurons in that feature map and the gradient of the

class logit with respect to that feature map. Thus, the gradient of the class logit with respect to

a given neuron in the feature map is multiplied by that neuron’s activation. Consequently, this

illustrates the regions which the model is placing importance on more truthfully than Grad-CAM

heatmaps do. HiResCAM heatmaps were found to be more precise than GradCAM on a high

performing model as a result (Draelos and Carin, 2020). The assessments outlined by Adebayo

et al. (2018) and Kindermans et al. (2019) have not yet been performed on HiResCAM. However,

as HiResCAM is very similar to Grad-CAM, one would expect it to pass these assessments too.

Moreover, the method has not received many citations. Thus, it likely needs to be further verified.

Saliency maps

Saliency maps are found by computing the derivative of the activation of the output neuron

that corresponds to a particular class classification with respect to the pixels in an input image.

According to the authors, ‘The magnitude of the derivative indicates which pixels need to be

changed the least to affect the class score the most’ (Simonyan et al., 2013). Saliency maps were

not integrated into a heatmap loss function due lack of time. They passed the feature attribution

method assessments outlined by Adebayo et al. (2018) and Kindermans et al. (2019). To the best

of my knowledge, they provide meaningful explanations.

¶Class logits are the activations of neurons in the output layer of a network that correspond to the different class
classifications before these activations have been normalised by passing them through a normalisation function (e.g.
sigmoid function)
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Gradients x input

These feature attribution maps are produced by performing an element wise multiplication between

the pixels in the aforementioned saliency maps with the values of the pixels in the input image. This

method was not considered as it failed the tests outlined by Adebayo et al. (2018) and Kindermans

et al. (2019). Kindermans et al. (2019) demonstrated that input images could be altered so that

the activations of the output neuron corresponding to a given class classification would not change

yet the gradients x input attribution heatmap would change substantially. To quote the authors,

they were able to ‘purposefully create a deceptive explanation of the network’ by superimposing a

hand drawn cat image over images from the MNIST dataset. An illustration of the results from

this test can be seen below.

Figure 2.1: The two images in the leftmost column produce identical network classifications yet
yield very different Gradients x input attribution maps as can be seen in the rightmost column.
Image adapted from Kindermans et al. (2019)

Before any feature attribution method is integrated into a heatmap loss function to train a model in

a high-stake classification task, a consensus should be reached on an assessment protocol to test the

validity of feature attribution methods in general. Until we can be sure that the feature attribution

method that is integrated into the heatmap loss function provides truthful explanations, it is likely

that the trained classifier would learn undesirable behaviours.
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2.5 Working with small datasets

Without sufficiently large datasets, DL models are prone to overfitting. Overfitting occurs when

a model fits to the training dataset but does not generalise well on unseen data. Ying (2019)

highlights three causes of overfitting, these include; the presence of noise in the training dataset,

too small a training dataset and the use of overly complex classifiers for the task at hand.

Approaches to combat overfitting include dataset expansion, data augmentation and the applica-

tion of other regularisation techniques such as; L1, L2 and dropout regularisation.

One cannot always build high performing models using small datasets. If a dataset is too small,

it simply can not adequately represent the diversity of the population from which it was sampled

even with the application of the aforementioned regularisation techniques.

2.5.1 Data Augmentation

Data augmentation is a method employed to artificially increase the size and improve the quality of

a training dataset. It can help combat overfitting by making a training dataset more representative

of the population from which it was sampled. Shorten and Khoshgoftaar (2019) divide data

augmentation techniques into two categories; data warping and oversampling.

Data warping techniques involve altering existing data in the training dataset in order to increase

its diversity.

Examples of data warping techniques include the application of:

• Geometric transformations such as; rotating, translating, scaling, cropping and elastic

deformations.

• Colour transformations such as colour shifting and lighting changes.

• Noise injection.

• Random erasing, where patches of varying shapes and sizes are ’erased’ (i.e. replaced with

pixels/voxels of a constant value).

• Applying kernel filters to sharpen/blur images or techniques such as neural style transfer.
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Care must be taken when applying data warping augmentations to ensure that the data’s label is

preserved. For example, applying random erasing to mammograms could lead to all evidence of

cancerous growth in a cancerous mammogram being removed.

Wolterink et al. (2017) applied 90° rotations to the MRIs in the ACDC dataset when training their

classifier. This was likely done as MRIs in the ACDC dataset appear to be roughly aligned with

either the x or y axes. However, applying rotations within a random range would likely lead to

a model which generalises better. Isensee et al. (2017) applied random rotations to cardiac MRIs

in the ACDC dataset when training classification and segmentation models. Isensee et al. (2017)

also applied other data warping techniques such as; gamma-corrections, elastic deformations, the

mirroring of MRIs along the x and y axes and slice translations to mimic motion augmentation.

Similarly, Khened et al. (2017) applied translations along the x and y axes as well as random

rotations on cardiac MRIs from the ACDC dataset. However, Khened et al. (2017) also applied

random zoom factors between 0.6 and 1.4 to Cardiac MRIs in order to increase the dataset

diversity. Although not mentioned by Baumgartner et al. (2017a) in their paper, based on the

source code corresponding to their implementation‖, random rotations within a range of -15° and

15° as well as left right flips were applied to cardiac MRIs. According to the original paper on the

UNet architecture (Ronneberger et al., 2015), the application of elastic deformations was crucial

to training biomedical segmentation networks on small datasets. These transforms were said to

simulate deformations of biological tissue efficiently. Translations and random rotations were also

applied.

In this study, the source code provided by (Baumgartner et al., 2017b) was adapted to train a

3D UNet to segment cardiac MRIs from the ACDC dataset. Consequently, when the UNet was

transformed into a classification model, the augmentation methods applied by Baumgartner et al.

(2017a) were still used. These included minor rotations within a range of -15° and 15° as well as

the random application of left right flips. As high-performing classifiers were not trained using

this set up, additional data warping techniques were applied. These included the application of

elastic transforms as recommended by Ronneberger et al. (2015) and as successfully implemented

by Isensee et al. (2017), the implementation of translations along the x and y dimensions to mimic

motion artefacts and the injection of Gaussian noise. The regularisation technique dropout was

also trialled as this was used in the original UNet paper (Ronneberger et al., 2015) and by Khened

et al. (2017).

‖See augmentation function() in train.py (Baumgartner et al., 2017b)
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Oversampling:

Oversampling involves adding synthetic images to your training dataset.

Examples of oversampling methods include,

• Random Oversampling (ROS), where random examples of the minority class are duplicated.

• Using generative models such as variational autoencoders or generative adversarial networks

to create synthetic images.

Oversampling is typically performed only on imbalanced datasets where the classes in a dataset

are not equally represented. As the ACDC dataset was balanced, containing 20 cardiac MRIs from

each disease class, none of previously mentioned researchers implemented oversampling techniques

when training classification or segmentation algorithms. However, in this study, the decision was

made to simplify the classification task as no progress was made training a multiclass classifier on

the ACDC dataset. Consequently, cardiac MRIs were split into two classes, normal and diseased.

The resulting dataset was imbalanced, with 20 cardiac MRIs corresponding to normal patients and

80 corresponding to patients with heart disease. As a result, the issue of class imbalance had to be

solved. The decision was made to use an alternative approach which involved leaving the dataset

untouched and altering the weighting assigned to samples of data from each class in the model’s

loss function. The latter approach can be easily applied in modern deep learning frameworks. For

example, Keras’ model.build() method allows you to provide different weightings to sample data

from different classes via a class weight parameter.

2.5.2 Transfer learning

Transfer learning is used as it can reduce the time taken for training convergence and can lead

to improved model performance on tasks with small datasets. In their survey paper on transfer

learning, Weiss et al. (2016) define transfer learning as the process of improving model performance

at a target task (task B) by using learnings from a model that was trained on a different dataset

to carry out a different task (task A).
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Ng (2017), states that transfer learning only makes sense when:

• Tasks A and B take the same type of data as inputs (e.g. both take image data as inputs).

• There is a lot more data for task A than task B. This is the case as data for task A is

inherently less valuable than data for task B (i.e. if you had sufficient data from task B, then

there would be no incentive to use data from task A).

• Low level features learned from task A can be helpful in task B. Feature extractors such as

edge and high-low frequency detectors have been discovered in many computer vision models

trained on different datasets (Olah et al., 2020). It is likely that such feature extractors would

be useful for most computer vision tasks.

Models trained on the ImageNet dataset are often chosen for transfer learning in computer vision

tasks due to the sheer size of the dataset. However, these models are not ideally suited for classifying

volumetric medical data such as cardiac MRIs. 2D pre-trained models have been used to segment

3D data by dividing 3D volumes into 2D slices ((Yu et al., 2018), (Han, 2017)). However, using

3D CNNs to segment 3D data has been found to give far superior segmentation performance than

splitting this data into 2D slices and using 2D CNNs to perform sequential segmentations (Lai,

2015). It was for this reason that Med3D was developed (Chen et al., 2019). Med3D is a 3D CNN

trained on volumetric medical images of several organs gathered from several medical imaging

modalities. The use of Med3D in this project was considered. However, it was not used as it was

implemented using a DL framework that I was not familiar with. Instead the decision was made

to train a 3D UNet to segment MRIs from the ACDC dataset and to build a classifier around the

encoder from this UNet. This decision was made as open source code to train a 3D UNet to classify

cardiac MRIs using a DL framework familiar to me was found online (Baumgartner et al., 2017b).

This was deemed a reasonable approach as encoders from UNets had been successfully used as

feature extractors for classification models working with x-ray data ((Soulami et al., 2021), (Dong

et al., 2020)). Furthermore, encoders from auto-encoders are frequently used as feature extractors

for classification tasks. For example, Liu et al. (2021) and Betechuoh et al. (2006) based disease

classifiers around encoders taken from auto-encoders.
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2.6 Model architectures used

2.6.1 VGG network

A VGG16 network that had been pre-trained on the ImageNet dataset was used for the experiments

involving the synthetic cardiac MRIs.

The VGG network was developed by Simonyan and Zisserman (2014). This network placed first in

the image localisation task and second in the image classification task in the ImageNet Large Scale

Visual Recognition Challenge in 2014. The VGG network succeeded and outperformed AlexNet

(Krizhevsky et al., 2012). The VGG network differs from AlexNet by using smaller convolutional

filters with a receptive field of (3x3). The use of smaller filters enabled the VGG network to be

much deeper than AlexNet. There are two combinations of the VGG network, VGG16 and VGG19.

These have 16 and 19 convolutional layers respectively. The classifier used in this experiment was

based on the VGG16 network.

VGG16 was chosen for the task of classification on the dataset of synthetic cardiac MRIs as it had

been successfully applied by many researchers in medical imaging domains. A VGG16 architecture

was found to outperform approximately 20 other commonly used CNN architectures for the task of

cardiac short axis slice classification by Ho and Kim (2021). Moreover, a transfer learned VGG16

network was shown to outperform a transfer learned Xception network at classifying chest X-rays

as normal or pneumonic by Ayan and Ünver (2019). VGG16 also achieved 94% classification

accuracy at classifying skin cancer classification from skin lesion images (Khamparia et al., 2021).

Below is a diagram of the VGG16 network 2.2. This model architecture differs slightly from the

architecture used in the experiments in this project. The final three fully connected layers as well

as the softmax layers from the pre-trained VGG16 model were removed. These were replaced with

a single fully connected layer consisting of 100 neurons, followed by a fully connected layer with

four neurons (one for each disease class) and a softmax layer.
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Figure 2.2: Structure of VGG16 (Sugata and Yang, 2017)

2.6.2 UNet architecture

The UNet architecture was developed by Ronneberger et al. (2015) to segment cells in transmitted

light microscopy images. It won the ISBI cell tracking challenge in 2015 and is one of the most

popular architectures for semantic segmentation today. Nine out of the ten cardiac segmentation

algorithms referenced in the ACDC study were UNet or ‘UNet like’ networks (Bernard et al., 2018).

No CNN had been trained to classify cardiac disease from MRIs on the ACDC dataset. This was

likely due to the small dataset, which contained only 100 MRIs. However, features extracted from

the segmentation masks produced by UNets had been used to train machine learning classifiers such

as random forests, support vector machines and multi layer perceptrons ((Khened et al., 2017),

(Cetin et al., 2017), (Isensee et al., 2017)). Thus, it was hypothesised that a fully convolutional

network which made use of the encoder from a UNet could be used to train the first CNN to

classify cardiac MRIs on this dataset. Thus, a 3D UNet was trained to segment cardiac MRIs from

the ACDC dataset. The decoder from this UNet was then discarded and it was replaced with two

fully connected layers with many neurons, followed by a fully connected layer with four neurons

(one for each disease class) and a softmax layer. This formed the classification architecture.

Below is an image of a 2D UNet architecture 2.3. It consists of two sections, the encoder and

decoder. These are also known as the contracting path and the expanding path. The encoder,

which can be seen on the left, was kept for use in the classifier. The decoder, which can be seen on

the right, was discarded. The diagram below is of a 2D UNet, however, a 3D UNet was used in this
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study. A 3D UNet was chosen as 3D CNNs trained to segment 3D data were found to outperform

2D CNNs used to sequentially segment 2D slices from 3D data (Lai, 2015). Thus, it was inferred

that 3D CNNs would serve as better feature extractors for 3D data. The only difference between

a 3D UNet and a 2D UNet is that 3D convolution, pooling and up convolution operations are

performed instead of their 2D counterparts.

Figure 2.3: Structure of a 2D UNet (Ronneberger et al., 2015)
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Chapter 3

Methodology and Results

3.1 Dataset

The purpose of the synthetic dataset of cardiac MRIs was to perform the experiments proposed

below in order to test the feasibility of a heatmap loss function. Attempts were made to make

the synthetic dataset mimic the ACDC dataset. These attempts were made as the heatmap loss

function would be employed to train models on the ACDC dataset if results were promising on the

synthetic dataset.

The synthetic datasets consisted of the disease classes; normal, hypertrophic cardiomyopathy,

dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. This dataset was

balanced much like the ACDC dataset. However, there were several discrepancies between the two

datasets. The major differences included;

Dataset size: The ACDC dataset contains 100 cardiac MRIs whereas it was decided to include

10,000 MRIs in the synthetic training dataset and 3,000 in the validation dataset. Large dataset

sizes were chosen to reduce the likelihood that a limited dataset would interfere with testing the

feasibility of the novel loss function.

MRIs in the ACDC dataset are a time series of volumetric data. MRIs in the synthetic dataset

were 2D MRI cross sections. This simplification was made as the dimensionality of the input data

was deemed irrelevant for the purposes of testing the feasibility of the loss function

MRIs of patients with myocardial infarction were not included in the synthetic dataset. The

biomarkers of this disease were not as straightforward to model as the other four diseases in the

ACDC dataset. The decision to omit this disease class was made as perfectly mimicking the ACDC

dataset was deemed irrelevant for the purposes of testing the feasibility of the loss function.

Several attempts were made to make the synthetic cardiac MRI cross sections representative of

the underlying diseases and of real world cardiac MRIs. An explanation of how these MRIs were

generated is given below. However, one may find reading the source code used to generate these
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MRIs more insightful. The code can be found here. The function used to generate the MRIs was

called make mri and seg mask().

3.1.1 Synthetic cardiac MRI details

The prevalence of the diseases among male and female sexes was accounted for, with approximately

2.7 times more male cases of ARV than female cases. Similarly, there were approximately 1.3 times

more male cases of HCM than female cases.

A size multiplier was used to scale the radii of the heart chambers and the degree of body fat in

MRIs based on the individual’s body fat percentage. As chamber radii were made proportional to

the size multiplier, the area of these chambers in the 2D cross sections were proportional to the

square of the size multiplier.

Size multipliers for female MRIs were pulled from a Gaussian distribution with a mean of 1 and

standard deviation of 0.15. Size multipliers for male MRIs were pulled from a Gaussian distribution

with a mean of 1.3 and a standard deviation of 0.15. The inspiration to model size multipliers

this way was based on the distribution of male and female heights. As can be seen below, male

and female heights can be well modelled by Gaussian distributions where both distributions have

approximately equal standard deviations and the mean male height is approximately 2 standard

deviations larger than the mean female height.

Subcutaneous body fat was also included in the synthetic MRIs. The amount of pixels taken up

by body fat in an MRI cross section was determined by multiplying the individual’s body fat

percentage by their size multiplier. Data regarding the distributions of male and female body

fat percentages among Mongolian Adults was found (OtgontuyaE, 2009). As body fat was not

deemed crucial to this experiment, these distributions of body fat percentage were used. Body fat

percentage among patients in the synthetic dataset were normally distributed with males having

a body fat percentage of 26% and a standard deviation of 7.9% and females having a body fat

percentage of 36.4% and a standard deviation of 9.7%.

Prior to being scaled by the size multiplier, radii of heart chambers and chamber wall thicknesses

were assumed to be normally distributed for a given disease class. The mean radius/thickness for

each disease class were loosely estimated based on descriptions for the diseases found on radiopaedia

((Feger and Radiopaedia, 2021), (Saber and Radiopaedia, 2021), (Weerakkody and Radiopaedia,

2021)) and inferred from diagrams of characteristic hearts with the different diseases found online
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((Clinic, 2021), (Clinic, 2020), (UMichigan, n.d.)). The final radius/wall thickness for an individual

MRI was found by multiplying the individual’s size multiplier by the sampled value and adding

some individual variability. This variability was assumed to be normally distributed with a mean

of 0 and a standard deviation which was proportional to the size of the radius/thickness prior to

adding the variability.

Below, the main deviations between MRIs of the different disease classes are described:

• HCM: These MRIs had thicker left ventricle walls.

• DCM: These MRIs had more dilated left ventricles (i.e. larger left chamber radius). The

body fat of individuals with this disease were also pulled from a different Gaussian distribution

because obesity is a contributing factor for this disease.

• ARV: Two subtypes of ARV were modelled, fatty ARV and fatty fibro ARV. These MRIs

had more dilated right ventricles and fat was included in the chamber walls. The percentage

of fat was normally distributed.

Other less substantial systematic differences in heart dimensions were modelled. They can be

discovered by looking at the source code if required.

3.2 Experiment 1

3.2.1 Methods

The aim of the first experiment was to compare the performance of models trained with the novel

heatmap loss function to those trained with CCE. Below is the experimental plan which had been

devised prior to performing this experiment.

Gather a collection of models trained with the heatmap loss function that achieve a validation

accuracy of over 95%. These represent models a DL engineer would likely choose to deploy. Gather

a collection of models trained with CCE that achieve a validation accuracy of over 95Compute the

average degree of overlap between the HiResCAM heatmaps and the heart for all selected models in

both groups. All metrics will be evaluated on the same test dataset. Perform a two-sided statistical

test to test for statistically significant differences in the distributions of the above metrics among

both groups of models. Perform a non-parametric statistical test (Mann-Whiteney U-test) if the
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distribution of performance metrics among either group is not normally distributed. Otherwise,

perform a parametric test (t-test).

In an attempt to remove some sources of variability, it was decided that all models would be

trained and evaluated on the same datasets. As larger datasets yield more accurate estimations,

a dataset of 10,000 synthetic cardiac MRIs was used to estimate a model’s mean heatmap-heart

overlap on unseen MRIs. Substantially larger dataset sizes were ruled out as they would not fit

in a single NumPy array on the low RAM Colab GPU instances. Fitting the dataset into a single

NumPy array was desirable as inference would be quicker if the data only needed to be loaded

once. Otherwise, the dataset size of 10,000 was arbitrarily chosen.

Below are sample cardiac MRI cross sections used in this experiment.

Figure 3.1: Exp 1: Normal MRIs Figure 3.2: Exp 1: HCM MRIs

Figure 3.3: Exp 1: DCM MRIs Figure 3.4: Exp 1: ARV MRIs

Initially two models were trained, one model using the heatmap loss function and one model using

the CCE loss function. Many learning rates were trialled before a model was found whose validation
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loss and accuracy stably converged. These training runs were performed manually in several Colab

notebooks. Tracking model results and the latest code got messy very quickly as several different

implementations had been run in different Colab notebooks. Thus, several process improvements

were made. These included;

• Making a GitHub repository to track all code that was shared between multiple notebooks.

This meant the Git repository could be cloned into each Colab notebook and the necessary

functions could be imported. This meant there were never several implementations of

functions across different notebooks.

• Using a library called Keras Tuner to automate the hyperparameter searches.

• Saving trained models in a directory on Google Drive along with their performance metrics

(as evaluated on a test set) in a json file.

• Setting up a local PostgreSQL database and using a tool called ngrok to expose the Postgres

server to the internet. This made it possible to have multiple hyperparameter searches be

carried out simultaneously. Prior to this, some model’s performance metrics were lost as two

notebook instances were simultaneously writing to the json file used to track results.

Two models were then trained with each loss function using the aforementioned workflow. The

mean HiResCAM-heart overlap were computed on the test dataset for these four trained models.

The mean and standard deviations of the overlap metrics for models trained with both loss functions

were estimated. Using these estimates, a Cohen’s d effect size of 7.6 was calculated. Given an

estimated effect size of 7.6 and an alpha level of 0.05, three models would need to be trained using

each loss function in order to achieve an arbitrarily chosen desired power of 0.9999. In hindsight,

a more conservative alpha level should have been set given how few samples were needed in order

to conduct a test with such a high power given the estimated effect size.

As multiple hyperparameter searches could be conducted in parallel using the automated workflow

that had been developed, it was decided to train approximately thirty models using the heatmap

loss function and the CCE loss function overnight. A large fraction of these models were expected

to be discarded because they would not have achieved a validation accuracy of over 95%. After

filtering for models which achieved a validation accuracy of greater than 95%, 23 models trained

with the heatmap loss function and 25 models trained with CCE remained.
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Mean HiResCAM-heart overlaps were computed for models in both groups. Two Shapiro-Wilkes

tests (α = 0.05) were performed to test whether the distributions of these metrics within each

group were normally distributed. The null hypothesis for a Shapiro-Wilkes test is that the data in

a sample was drawn from a normal distribution. Both Shapiro-Wilkes tests returned p-values less

than 0.01. As these are less than the preset significance level of 0.05, the null hypothesis that the

distribution of mean heart overlap metrics were drawn from a normal distribution was rejected.

Consequently, a two-sided Mann-Whitney U-test (α = 0.05) was performed to test for a statistically

significant difference between the two group’s HiResCAM-heart overlaps. The null hypothesis was

that there is no systematic difference between the mean HiResCAM-heart overlaps of models

trained with a heatmap loss function and the mean HiResCAM-heart overlaps of models trained

with a CCE loss function.

Figure 3.5: Experiment 1: Distribution of HiResCAM-heart overlaps

3.2.2 Results

This Mann-Whitney U-test returned a p-value ≈ 1×10−9. This is less than the preset significance

level of 0.05. Thus, the null hypothesis is rejected. These results support the alternative hypothesis

that the mean HiResCAM-heart overlaps of models trained with the heatmap loss function are

systematically higher than the mean HiResCAM-heart overlaps of models trained with CCE. As
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all mean HiResCAM-heart overlaps for models trained with CCE were smaller than all mean

HiResCAM-heart overlaps for models trained with the heatmap loss function, a common language

effect size of 0.0 was calculated. The Cohen’s d effect size was calculated to be -10.78, this is an

extremely large effect size. Assuming the HiResCAM heatmaps provide truthful visualisations,

these results suggest that models trained with the HiResCAM loss function appear to base their

classifications to a higher extent off of information lying in regions within the heart than models

trained with CCE.

Below are sample HiResCAM heatmaps produced by one randomly chosen model trained with

a CCE loss function.

Figure 3.6: Exp 1: Normal MRI heatmaps Figure 3.7: Exp 1: HCM MRIs heatmaps

Figure 3.8: Exp 1: DCM MRIs heatmaps Figure 3.9: Exp 1: ARV MRIs heatmaps
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Below are sample HiResCAM heatmaps produced by one randomly chosen model trained with a

heatmap loss function.

Figure 3.10: Exp 1: Normal MRIs heatmaps Figure 3.11: Exp 1: HCM MRIs heatmaps

Figure 3.12: Exp 1: DCM MRIs heatmaps Figure 3.13: Exp 1: ARV MRIs heatmaps

3.3 Experiment 2

3.3.1 Methods

A second experiment was carried out to test whether models trained with either loss function were

relying on knowledge of the patient’s sex when making classifications. It was theorised that a model

trained with a traditional loss function may base disease classifications based off knowledge of a

patient’s sex. We hypothesised that this would be most likely to occur when classifying diseases

such as ARV, as this disease occurs a disproportionate amount in males in our training dataset (as

well as in real life).
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For this experiment, all systematic differences between the MRIs of males and females were

removed. This was implemented by pulling the size multiplier described in the dataset section

above from the same distribution for male and female patients. Thus, there should be no systematic

differences between the chamber radii, wall thicknesses and body fat in male and female MRIs.

However, a label was included in the bottom corner of male patient’s MRIs. This enabled the

separation of the feature, sex, from the heart. Thus, a model’s reliance on information of the

patient’s sex could be calculated by measuring the degree of overlap between the feature attribution

heatmaps and the sex labels.

Below are sample cardiac MRI cross sections used in this experiment.

Figure 3.14: Exp 2: Normal MRIs Figure 3.15: Exp 2: HCM MRIs

Figure 3.16: Exp 2: DCM MRIs Figure 3.17: Exp 2: ARV MRIs
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It was assumed that a similar effect size would be observed in this experiment. Thus, it was assumed

that training three models with each loss function should be sufficient to achieve a sufficiently high

power for an alpha level of 0.05. Once again, a more conservative alpha level should have been set

for this experiment.

The automated workflow was then employed to train approximately thirty models using the

heatmap loss function and the CCE loss function. A large fraction of these models were expected

to be discarded because they would not have achieved a validation accuracy of over 95%. After

filtering for models which achieved a validation accuracy of greater than 95%, 22 models trained

with the heatmap loss function and 23 models trained with CCE remained.

Mean HiResCAM-heart overlaps were computed for models in both groups. Two Shapiro-Wilkes

tests (α = 0.05) were performed to test whether the distributions of these metrics within each

group were normally distributed. The null hypothesis for a Shapiro-Wilkes test is that the data in

a sample was drawn from a normal distribution. A p-value of 0.49 was returned from the Shapiro

Wilkes test performed on the overlap metrics of models trained with CCE. Thus, we fail to reject

the null hypothesis. However, a p-value of 0.008 was returned from the Shapiro Wilkes test carried

out on the sample of overlaps from the models trained with the heatmap loss function. This

supports the alternative hypothesis that the distribution of the overlap metrics were not drawn

from a normal distribution and consequently are not normally distributed.

Consequently, a two-sided Mann-Whitney U-test (α = 0.05) was performed to test for a statistically

significant difference between the two group’s HiResCAM-heart overlaps. The null hypothesis was

that there is no systematic difference between the mean HiResCAM-heart overlaps of models

trained with a heatmap loss function and the mean HiResCAM-heart overlaps of models trained

with a CCE loss function.
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Figure 3.18: Experiment 2: Distribution of HiResCAM-heart overlaps

Figure 3.19: Distribution of HiResCAM-sex label overlaps (+/- 1.5IQR from median) for
a) Models trained with heatmap loss function on the left (Note, order of magnitude of overlaps ≈
1× 10−7).
b) Models trained with CCE loss function on the right (Note, order of magnitude of overlaps ≈
1× 10−4).
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Figure 3.20: Distribution of HiResCAM-sex label overlaps (+/- 5IQR from median) for models
trained with the heatmap loss function on the left and models trained with CCE on the right.

3.3.2 Results

This Mann-Whitney U-test returned a p-value ≈ 1×10−8. This is less than the preset significance

level of 0.05. Thus, the null hypothesis is rejected. This result supports the alternative hypothesis

that the mean HiResCAM-heart overlaps of models trained with the heatmap loss function are

systematically higher than the mean HiResCAM-heart overlaps of models trained with CCE. As

all mean HiResCAM-heart overlaps for models trained with CCE were smaller than all mean

HiResCAM-heart overlaps for models trained with the heatmap loss function, a common language

effect size of 0.0 was calculated. The Cohen’s d effect size was calculated to be -11.88, this is an

extremely large effect size. Assuming the HiResCAM heatmaps provide truthful visualisations,

these results suggest that models trained with the HiResCAM loss function appear to base their

classifications to a higher extent off of information lying in regions within the heart than models

trained with CCE.

A two-sided Mann-Whitney U-test (α = 0.05) was performed to test for a statistically significant

difference between the two group’s HiResCAM-sex label overlaps. The null hypothesis was that

there is no systematic difference between the mean HiResCAM-sex label overlaps of models trained

with a heatmap loss function and the mean HiResCAM-sex label overlaps of models trained with

a CCE loss function.
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This Mann-Whitney U-test returned a p-value ≈ 1×10−7. This is less than the preset significance

level of 0.05. Thus, the null hypothesis is rejected. This result supports the alternative hypothesis

that the mean HiResCAM-sex label overlaps of models trained with the heatmap loss function are

systematically lower than the mean HiResCAM-sex label overlaps of models trained with CCE.

As the majority of mean HiResCAM-sex label overlaps for models trained with CCE were larger

than all mean HiResCAM-sex label overlaps for models trained with the heatmap loss function,

a common language effect size of 0.95 was calculated. There existed some large outliers in both

groups overlaps. The rank sum test is not vulnerable to outliers. However, the Cohen’s d effect

size is. Thus, I will quote the Cohen’s d effect size after removing outliers. The Cohen’s d effect

size was calculated to be 1.84 after values +/- 1.5 IQRs above the medians were removed from the

samples of HiResCAM-sex label overlaps and it was calculated to be 1.25 after values +/- 5 IQRs

above the medians were removed from the samples of HiResCAM-sex label overlaps. These results

suggest there was a large effect between the two groups HiResCAM-sex label overlaps.

Below are sample HiResCAM heatmaps produced by one randomly chosen model trained with a

CCE loss function.

Figure 3.21: Exp 2: Normal MRI heatmaps Figure 3.22: Exp 2: HCM MRIs heatmaps
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Figure 3.23: Exp 2: DCM MRIs heatmaps Figure 3.24: Exp 2: ARV MRIs heatmaps

Below are sample HiResCAM heatmaps produced by one randomly chosen model trained with a

heatmap loss function.

Figure 3.25: Exp 2: Normal MRIs heatmaps Figure 3.26: Exp 2: HCM MRIs heatmaps

Figure 3.27: Exp 2: DCM MRIs heatmaps Figure 3.28: Exp 2: ARV MRIs heatmaps
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Chapter 4

Discussion & Conclusion

4.1 Discussion

4.1.1 Can models be trained to simultaneously achieve good classification

accuracy as well as to look in the right regions of input images?

This study has demonstrated that models trained to minimise a heatmap loss function can also

yield low losses as measured by traditional loss functions such as CCE. Moreover, the heatmap

loss function was shown to successfully incentivise models to base their classifications off relevant

portions of input images.

However, the classification task was evidently not very challenging, as many models from both

groups achieved perfect test set classification accuracies. Thus, further research is needed to test

whether models trained with a heatmap loss function on harder classification tasks can yield low

losses as measured by traditional loss functions. This experiment could be carried out by training

models on a dataset of synthetic MRIs which contain smaller systematic differences between the

MRIs of the different disease classes.

It would also be worth testing whether the heatmap loss function can be used to dissuade a

model from looking at features in an image that perfectly co-occur with images from a given

disease class. As the heatmap loss function is a weighted sum of a CCE and a heatmap

component, one could imagine a model sacrificing the heatmap component of the loss function

for an increased classification accuracy, especially in harder classification tasks. This could be

tested by superimposing class identifiers on images from any image dataset and training models

using the heatmap loss function.

4.1.2 How could the heatmap loss function be altered or improved?

The biggest change one could make would involve changing the loss metrics or feature attribution

methods used in the loss function. The feature attribution method HiResCAM was used in this

study. This could be replaced by a myriad of other feature attribution methods such as GradCAM,
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CAM or saliency maps to name but a few. Moreover, MSE was used to incentivise the model to

correctly classify images, this could be replaced by a CCE loss for example.

One could imagine tuning the weights of the heatmap and CCE components of the loss function

depending on the model’s performance. For example, if the model was incurring large CCE losses,

one could decrease the relative weighting of the heatmap component of the loss function. However,

if CCE losses were sufficiently small, it may be beneficial to further incentivise modes to look at

relevant portions of input images by increasing the relative weighting of the heatmap component

of the loss function.

One could also alter how the feature attribution map component of the loss function is calculated.

In this study, irrelevant portions of input images were highlighted and the model was penalised

for looking within those regions when making classifications. Alternatively, one could highlight

portions of input images that are necessary for a class classification and penalise a model for

not looking within those regions when making classifications. For example, ARV is characterised

by the replacement of the myocardium with fat tissue. Thus, a model could be penalised for

not looking at the fatty myocardium of the MRIs of patients with ARV when making ARV

classifications. Alternative metrics to measure overlaps between the irrelevant to relevant regions

and the feature attribution masks could be developed. Inspiration could be taken from metrics

used in segmentation problems. Different metrics to measure the overlap between predicted

segmentation masks and ground truth segmentation masks have been developed there. Many

of these metrics could likely be adapted for use in a heatmap loss function.

4.1.3 What concerns do you have about the heatmap loss function?

The heatmap loss function could facilitate the deployment of DL models that are not understood in

high stake scenarios. Models trained with this loss function could conceivably gain undeserved trust

due to the confirmation bias of humans and the convincing feature attribution maps produced by

models trained with this loss function. Those assessing the suitability of a DL model for deployment

would need to be familiar with the limitations of explanations provided by the different feature

attribution methods. I believe interpretable models should be used in high-stake scenarios in place

of non-interpretable models where possible.

More experiments need to be carried out to test whether minimising this heatmap loss function

(and others) is desirable. Answering this question is akin to solving the outer alignment issue in
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reinforcement learning problems. According to Hubinger et al. (2019), the outer alignment problem

involves aligning an agent’s reward function with the programmer’s intentions for the agent. For

example, would an agent that actually optimises for the reward function do what the programmer

wants the agent to do. Based on countless examples of unforeseen outer alignment failures in

reinforcement learning scenarios (Krakovna et al., 2020), brainstorming possible shortcomings of

a heatmap loss function is likely not sufficient, albeit worth doing nonetheless. To solve this

outer alignment problem, models would need to be trained with this loss function to perform a

variety of tasks on a variety of datasets and their behaviour analysed. Analysing these models

with feature attribution methods other than the methods used in the loss function would likely

be worth using here. The HiResCAM heatmaps produced by this randomly sampled model ??

that was trained with the heatmap loss function suggest that class classifications for normal and

ARV are unresponsive to features anywhere in the input image. This is likely due to a flaw in

the visualisation, as the heatmap overlays were not normalised in these visualisations. However,

it could also be due to models learning to minimise their heatmap loss by being unresponsive to

input features anywhere in an input image, not just outside the heart. Further investigation is

needed.

I am unsure whether models should always be discouraged from basing classifications on non-

causal features that disproportionately co-occur with a given class. By non-causal features, I mean

features whose presence were not caused by the class of interest and do not determine an image

being classified as an example of the class of interest. It seems feasible that in hard classification

tasks, knowledge of certain non-causal co-occurrences could lead to an increased classification

accuracy. I would argue that non-causal co-occurrences are already used in disease screening

today. For example, men are not encouraged to get screened for breast cancer as the probability

of an individual having breast cancer given that they are male is extremely low. However, when it

comes to breast cancer occurrence, sex is a non-causal feature. By that I mean an individual’s sex

is not caused by the presence of breast cancer nor does an individual’s sex cause breast cancer. In

an ideal world, we could develop screening and diagnostic tools that do not depend upon such non-

causal co-occurrences. In the case of breast cancer screening, ideally the only factor that influences

breast cancer screening and diagnosis would be the presence or absence of cancerous cells in breast

tissue.

Models that are dependent on non-causal features are especially problematic in scenarios where

the co-occurrence of that non-causal feature and examples of the class of interest changes. This
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might be less problematic for a disease classifier (assuming the disease does not change rapidly) as

human evolution is a slow process. However, societal changes can happen quickly. For example,

models trained 10 years ago that assign higher probabilities of classifying individuals as presidents

if the individual is white and male, will likely perform extremely poorly in 10 years time.

4.1.4 Where would this approach be useful?

Heatmap loss functions could be useful in overcoming learned biases. Learned biases are a known

issue in top performing ImageNet models (). Learned biases occur when a DL classifier recognises

features that disproportionately co-occur with examples from certain classes. The classifier then

learns to base class predictions on the presence or absence of these features. Identifying and

eliminating all features that happen to disproportionately co-occur with specific classes of images

in a dataset is likely an impossible task. Take the much simpler task of compiling a dataset where

all genders and races are equally represented for all relevant classes. Compiling adequately large

sets of sample images (to train a DL classifier) of builders, nurses, hurling players and presidents

that are equally represented by people of all genders and races would be a very challenging task.

In contrast it would likely be easier to use a heatmap loss function to disincentivise a model from

looking at the skin and hair/footnoteHair length is meant to serve as a proxy variable for gender.

Regardless of how good or bad a proxy variable hair length is, an individual’s hair length should

not be used to base job classifications. of individuals when making such classifications. Moreover,

by incentivising a model to look at smaller portions of images when making classifications, the total

number of features that happen to disproportionately co-occur with images from a given class that

a model could undesirably detect would be reduced. This is worth mentioning, as the DL engineer

training a model is likely not aware of the majority of the features that disproportionately co-occur

with the different classes in the training dataset. This could be due to our limited ability to detect

certain features when we are looking for them or our inability to track the degree to which features

co-occur with images from a given class.

Moreover, by limiting the number of irrelevant features that a model could feasibly∗ discover and

use when making classifications, it seems feasible that a model could be on smaller dataset sizes.

∗The word feasibly was used, as in theory all features that co-occur with examples from a given class are learnable.
However, with a heatmap loss function many of these features would likely not be learned as they lie in regions deemed
irrelevant for classifications. Basing classifications on such features would incurr large losses.
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4.1.5 Limitations of this approach

A major limitation of the heatmap loss function is that it inherits all the limitations of the feature

attribution method used. Should a flawed feature attribution method be used in the loss function,

it is likely that the model would not behave desirably. This would be the case even if high degrees

of overlap between the feature attribution maps and the relevant/irrelevant portions of the input

images were achieved. HiResCAM was integrated into the loss function in this study as it was

believed to be superior to GradCAM. However, the paper on HiResCAM is a preprint and has

not been cited by many researchers. Thus, it is possible this method is flawed. Should that be

the case, models trained with this loss function are likely behaving no more desirably than models

trained with a traditional loss function.

The additional training times required to train models with a heatmap loss function could be

a limiting factor. Models trained using the heatmap loss function took approximately twice as

long to train as models trained using CCE. For this implementation of the heatmap loss, only the

heatmaps of the class of the image being classified were compared to regions outside the heart.

Moreover, models trained with the heatmap loss functions were trained for approximately 3 times

fewer epochs. These models were trained over fewer epochs as validation accuracies and losses

stably converged quicker when using the heatmap loss function. Further research to test whether

this is typical of models trained using heatmap loss functions is needed. It is conceivable that

models trained with a heatmap loss function would stably converge in fewer epochs due to the

reduced number of features that they could feasibly use to base classifications off of.

The differences in training durations observed in this study are not necessarily representative of

the differences in training durations that one would observe should they implement their own

heatmap loss function. Firstly, it is likely that the heatmap loss function which was implemented

in this study was not implemented as efficiently as it could have been. No attempts were made to

make the heatmap loss function more efficient after the first working implementation. Thus, the

implementation of the CCE loss function provided by Keras was likely more efficient. Furthermore,

precise training durations were not measured for these experiments. Precise training times could

be calculated using the Python library ‘time’. These durations could then be stored with the rest

of the model information which was entered into a table in the database. Model training durations

were tracked using this approach when models were trained on the ACDC dataset.
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Applying this loss function would demand substantial amounts of additional labelling in some

scenarios. However, it may be possible that semantic segmentation algorithms could be employed

to automate this procedure. For example, segmentation algorithms could be used to create masks

of regions of exposed skin and hair in images. These masks could then be used to disincentivise

a model from looking at the skin and hair of individuals when making classifications related to

a profession (i.e. builder/nurse/president classifications). Moreover, segmentation masks already

exist for some medical imaging datasets. These could be adapted to train a model with a heatmap

loss function. In this study, the segmentation masks which came with the ACDC dataset were

used for this purpose, with regions outside of the heart deemed irrelevant for making heart disease

classifications.

It is worth mentioning that the increased labelling requirements and training times could be

minimised by selectively applying the heatmap component of the loss function to images from

certain classes. For example, the heatmap loss component could be applied only for classes where

bias in the training dataset had been identified or bias in a previously trained model. The MSE

component of the loss function could be applied on all images.

If highlighting features in an image that we do not want the classifier to base classifications off of,

these features need to be separable from the regions that we want the classifier to base classifications

off of. For example, size and colour could be irrelevant when classifying images of a given class,

however, it would be impossible to highlight these features as irrelevant without highlighting the

entire object as irrelevant. In such scenarios, highlighting specific regions within the object that are

essential to make classifications could be done. Then a different heatmap metric could be used to

incentivise classifiers to look in these regions when making classifications. Alternatively, there may

exist transforms that could be applied to images to make different features of the object separable

from the object itself in a similar manner to how a Fourier transform applied to a time-domain

audio recording makes frequencies in the recording separable.

Furthermore, the success of the heatmap loss function heavily depends on the accuracy of the image

regions that are highlighted as relevant or irrelevant. By wrongly highlighting regions of images as

irrelevant, the network would be unlikely to base decisions off of meaningful co-occurrences between

features in those regions of images of the class of interest. For example, one could incorrectly deem

the backgrounds of images irrelevant. This is likely an unfair assumption as the context from an

image’s background is often necessary to classify the object in the foreground. For example, when

classifying diseases that originate from a specific organ one might wrongly assume that a model
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should not look outside of that organ for signs of the disease. This could prevent the network

from finding detectable systemic disease symptoms that are present outside of the primary organ

associated with the disease.

Moreover, if the regions are formed based on existing knowledge of where a classifier should be

looking when making classifications this would prevent the model from discovering undiscovered

disease biomarkers that lie outside of these regions. However, by incentivising models to look within

smaller regions of images when making classifications, the number of possible features which the

network could learn to base classifications off of would decrease. This decreased feature set may

make it easier for a human interpreter to discover meaningful biomarkers from.

4.2 Conclusion

This study has demonstrated that models trained to minimise a heatmap loss function can also

yield low losses as measured by traditional loss functions such as CCE. This approach could be

useful in overcoming the issue of learned biases and to train more skillful classifiers†.

Several questions about the heatmap loss function have been posed such as;

• Its utility on harder classification tasks.

• Its ability to prevent a model from basing predictions off features that perfectly co-occur

with a single disease class.

• Incorporating different feature attribution methods into the loss function.

• Tuning the weights of the heatmap and MSE components like any other hyperparameter in

a hyperparameter search.

• Quantifying the additional training time requirements and potentially making the heatmap

loss function implementation more efficient.

• Trying to identify models which achieve low heatmap losses but behave undesirably.

(Answering the outer alignment question).

• Experimenting to see if semantic segmentation algorithms can be used to automate the

irrelevant/relevant regions of images from a given class.

†Skillful classifiers are classifiers that look at information from the correct regions of images when classifying these
images as examples of a given class.
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• Test whether models trained with a heatmap loss function can be trained on smaller datasets

and if these models can be trained over fewer epochs.

Attempting to use this method to train an ImageNet classifier would be an interesting challenge

which would require several of the above issues be addressed.

The majority of the time spent on this project was trying to train a baseline DL classifier on the

ACDC dataset. This time would likely have been better spent answering some of the proposed

questions about this novel heatmap loss function. Given this experience, I believe new DL

techniques should be fully developed on computer generated datasets like the one used in this

study, or large high-quality datasets such as ImageNet. This would lead to faster research and

development. Attempts could then be made to apply proven methods in harder computer vision

sub-domains such as biomedical imaging.
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